Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samuel Robinson Jebas and Thailampillai Balasubramanian*

Department of Physics, National Institute of Technology, Tiruchirappalli 620 015, India

Correspondence e-mail: bala@nitt.edu

Key indicators

Single-crystal X-ray study
$T=303 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
R factor $=0.075$
$w R$ factor $=0.234$
Data-to-parameter ratio $=6.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4-Aminobenzoic acid-nicotinic acid (2/1)

In the title compound, $2 \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$, the 4 -aminobenzoic acid and the nicotinic acid molecules are approximately planar. The crystal structure is stabilized by an extensive network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

4-Aminobenzoic acid is involved in the biosynthesis of folic acid, which is a constituent of the vitamin B complex and is found in animal and plant tissues (Zoroddu et al., 1996). Nicotinic acid (vitamin B3), known as niacin, is a lipidlowering agent widely used to treat hypertriglyceridemia by the inhibition of lipolysis in adipose tissue (Athimoolam \& Rajaram, 2005). The nicotinic acid complex 5-methylpyrazine-2-carboxylic acid 4-oxide is a commonly used drug for the treatment of hypercholesterolemia (Lorenzen et al., 2001). Coordination complexes of nicotinic acid with metals such as Sn possess antitumour activity greater than that of the well known cis-platin or doxorubicin (Gielen et al., 1992). The enzyme nicotinic acid mononucleotide adenyltransferase is essential for the synthesis of nicotinamide adenine dinucleotide in all living cells and is a potential target for antibiotics (Kim et al., 2004). As a part of our investigation of interactions between acids, we report here the crystal structure of 4aminobenzoic acid-nicotinic acid (2/1), (I).

(I)

The asymmetric unit of (I) contains two independent aminobenzoic acid molecules and a nicotinic acid molecule. The bond lengths and angles of the nicotinic acid are normal (Kutoglu \& Scheringer, 1983). The nicotinic acid molecule is

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2
A packing diagram for (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.
approximately planar, with a maximum deviation from the mean plane of 0.138 (4) \AA for atom O6. Each of the 4aminobenzoic acid molecules is almost planar, the maximum deviation from the mean planes being 0.077 (5) \AA for atom O2 and 0.077 (5) \AA for atom O3. The bond lengths and angles of p-aminobenzoic acid in (I) are similar to those reported for 4aminobenzoic acid (Gracin \& Fischer, 2005).

The crystal structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Experimental

Solutions of 4-aminobenzoic acid and nicotinic acid were mixed in 2:1 molar ratio in ethanol and warmed in a water bath for 2 h . Yellow crystals were obtained after two weeks via slow evaporation.

Crystal data

$$
\begin{aligned}
& 2 \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2} \\
& M_{r}=397.38 \\
& \text { Monoclinic, } C c \\
& a=10.1803(4) \AA \\
& b=13.8050(7) \AA \\
& c=13.6530(8) \AA \\
& \beta=99.680(4)^{\circ} \\
& V=1891.46(16) \AA^{3}
\end{aligned}
$$

$Z=4$

$D_{x}=1.395 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=303$ (2) K
Block, yellow
$0.4 \times 0.25 \times 0.2 \mathrm{~mm}$

Data collection

Nonius MACH3 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.969, T_{\text {max }}=0.979$
3471 measured reflections
1614 independent reflections

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.075
$$

$$
w R\left(F^{2}\right)=0.234
$$

$$
S=1.05
$$

1614 reflections
262 parameters

$$
\begin{aligned}
& \text { H-atom parameters constrained } \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.2 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 6-\mathrm{H} 6 A \cdots{ }^{3}{ }^{\text {i }}$	0.82	1.73	2.549 (7)	177
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.86	2.56	3.278 (10)	141
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 5^{\mathrm{iii}}$	0.86	2.11	2.930 (11)	160
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {iv }}$	0.86	2.32	3.113 (10)	154
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {i }}$	0.86	2.57	3.303 (11)	144
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}$	0.82	1.81	2.620 (8)	168
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3$	0.82	1.79	2.596 (8)	167

Symmetry codes: (i) $x,-y, z-\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$; (iii) $x, y+1, z$; (iv) $x+\frac{1}{2}, y-\frac{1}{2}, z$.

After checking their presence in a difference map, H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.82 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ and $1.5 U_{\text {eq }}(\mathrm{O})$. In the absence of significant anomalous scattering effects, 158 Friedel pairs were averaged.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

References

Athimoolam, S. \& Rajaram, R. K. (2005). Acta Cryst. E61, o2764-o2767.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Gielen, M., Khloufi, A. E., Biesemans, M. \& Willem, R. (1992). Polyhedron, 11, 1861-1868.
Gracin, S. \& Fischer, A. (2005). Acta Cryst. E61, o1242-o1244.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kim, H.-L., Yoon, H.-J., Ha, J. Y., Lee, B. I., Lee, H. H., Mikami, B. \& Suh, S. W. (2004). Acta Cryst. D60, 948-949.

Kutoglu, A. \& Scheringer, C. (1983). Acta Cryst. C39, 232-234.
Lorenzen, A., Stannek, C., Lang, H., Andrianov, V., Kalvinsh, I. \& Schwabe, U. (2001). Mol. Pharmacol. 59, 349-357.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zoroddu, M. A., Dallocchio, R. \& Mosca, S. (1996). Polyhedron, 15, $277-$ 283.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

